skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Heidi J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Roux, Simon (Ed.)
    ABSTRACT We report the genomic sequences of 14 bacterial isolates from a supraglacial stream on the Cotton Glacier, Antarctica. Fine sediments in the streambed provide habitat for bacterial growth and biofilm formation. The stream represents a natural laboratory for studying the evolution and adaptation of microbes to a humic-free environment. 
    more » « less
    Free, publicly-accessible full text available September 11, 2026
  2. Thrash, J Cameron (Ed.)
    ABSTRACT Inland meltwater ponds are common throughout the dry valley region of Antarctica, with seasonal meltwater inputs driving their biogeochemistry. Here, we report the genomic sequences of eight environmental bacterial isolates covering three major phyla from Marr Pond, Taylor Valley, Antarctica. 
    more » « less
    Free, publicly-accessible full text available June 12, 2026
  3. Maresca, Julia A (Ed.)
    ABSTRACT Sediments in cryoconite holes and meltwater streams in the McMurdo Dry Valleys, Antarctica, provide both substrates and conditions that support life in an arid polar desert. Here, we report the genomic sequences of eight environmental, bacterial isolates from Canada Glacier cryoconite holes and stream. These isolates span three major phyla. 
    more » « less
  4. Abstract Environmentally relevant metagenomes and BONCAT-FACS derived translationally active metagenomes from Powder River Basin coal seams were investigated to elucidate potential genes and functional groups involved in hydrocarbon degradation to methane in coal seams with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed the establishment of coal-associated microbial communities under in situ conditions for metagenomic analyses from environmental and translationally active populations. Metagenomic sequencing demonstrated that biosurfactants, aerobic dioxygenases, and anaerobic phenol degradation pathways were present in active populations across the sampled coal seams. In particular, results suggested the importance of anaerobic degradation pathways under high-sulfate conditions with an emphasis on fumarate addition. Under low-sulfate conditions, a mixture of both aerobic and anaerobic pathways was observed but with a predominance of aerobic dioxygenases. The putative low-molecular-weight biosurfactant, lichysein, appeared to play a more important role compared to rhamnolipids. The methods used in this study—subsurface environmental samplers in combination with metagenomic sequencing of both total and translationally active metagenomes—offer a deeper and environmentally relevant perspective on community genetic potential from coal seams poised at different redox conditions broadening the understanding of degradation strategies for subsurface carbon. 
    more » « less
  5. As many bacteria detected in Antarctic environments are neither true psychrophiles nor endemic species, their proliferation in spite of environmental extremes gives rise to genome adaptations. Janthinobacterium sp. CG23_2 is a bacterial isolate from the Cotton Glacier stream, Antarctica. To understand how Janthinobacterium sp. CG23_2 has adapted to its environment, we investigated its genomic traits in comparison to genomes of 35 published Janthinobacterium species. While we hypothesized that genome shrinkage and specialization to narrow ecological niches would be energetically favorable for dwelling in an ephemeral Antarctic stream, the genome of Janthinobacterium sp. CG23_2 was on average 1.7 ± 0.6 Mb larger and predicted 1411 ± 499 more coding sequences compared to the other Janthinobacterium spp. Putatively identified horizontal gene transfer events contributed 0.92 Mb to the genome size expansion of Janthinobacterium sp. CG23_2. Genes with high copy numbers in the species-specific accessory genome of Janthinobacterium sp. CG23_2 were associated with environmental sensing, locomotion, response and transcriptional regulation, stress response, and mobile elements—functional categories which also showed molecular adaptation to cold. Our data suggest that genome plasticity and the abundant complementary genes for sensing and responding to the extracellular environment supported the adaptation of Janthinobacterium sp. CG23_2 to this extreme environment. 
    more » « less
  6. Here, we present the draft genome sequence for the violacein-producing Janthinobacterium sp. CG23_2 isolated from an Antarctic supraglacial stream. The genome is ~7.85 Mb, with a G+C content of 63.5%. The genome includes 7,247 candidate protein coding genes, which may provide insight into UV tolerance mechanisms. 
    more » « less